

LEISTUNGSERKLÄRUNG

HECO-DoP ETA 15/0784 MMS-plus 1606 DE

1. Eindeutiger Kenncode des Produkttyps:

MULTI-MONTI-plus (MMS-plus)

2. Typen-, Chargen- oder Seriennummer oder ein anderes Kennzeichen zur Identifikation des Bauprodukts gemäß Artikel 11 Absatz 4:

Kennzeichnung gemäß ETA-15/0784 Anhang A2, A3

Chargennummer: siehe Produktverpackung

3. Vom Hersteller vorgesehener Verwendungszweck oder vorgesehene Verwendungszwecke des Bauprodukts gemäß der anwendbaren harmonisierten technischen Spezifikation:

ETA-15/0784 Anhang B1

Dübeltyp	Schraubanker
Zu verwenden in	Beton C20/25 bis C50/60 (EN 206) - ungerissen: Ø6, Ø7.5, Ø10 und Ø12 - gerissen: Ø6, Ø7.5, Ø10 und Ø12
Option/Kategorie	Option 1 Seismisch: Leistungskategorie C1
Beanspruchung	statisch, quasi-statisch, seismisch (Ø10 + Ø12), Feuerwiderstand
Material/Ausführung	Verzinkter Stahl: - für Anwendungen unter den Bedingungen trockener Innenräume - unterschiedliche Kopfformen

4. Name, eingetragener Handelsname oder eingetragene Marke und Kontaktanschrift des Herstellers gemäß Artikel 11 Absatz 5:

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Str. 28 78713 Schramberg

- 5. Gegebenenfalls Name und Kontaktanschrift des Bevollmächtigten, der mit den Aufgaben gemäß Artikel 12 Absatz 2 beauftragt ist:
- 6. System oder Systeme zur Bewertung und Überprüfung der Leistungsbeständigkeit des Bauprodukts gemäß Anhang V:

System 1

7. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, das von einer harmonisierten Norm erfasst wird:

Dr.-Kurt-Steim-Straße 28 78713 Schramberg Telefon: +49 (0) 74 22-9 89-0 Telefax: +49 (0) 74 22-9 89-200

E-Mail: info@heco-schrauben.de Internet: www.heco-schrauben.de Sitz Schramberg, Amtsgericht Stuttgart HRB 480374 Volksbank Schwarz Geschäftsführer: Stefan Hettich, Guido Hettich, UST-ID-Nr. DE 142646601 Deutsche Postbank ILN 40 19787 00000 0

Kreissparkasse Rottweil
 Volksbank Schwarzwald Neckar eG
 642 920 20
 41 980 000
 GENODES1SBG

 Deutsche Postbank
 600 100 70
 135 70-700
 PBNKDEFF600
 Commerzbank VS-Villingen

642 500 40 556 509 1 571 629 694 400 07

S.W.I.F.T.-Code SOLADES1RWL COBADEFF694

I.B.A.N.-Code DE90642500400000556509 DF27642920200041980000 DE07600100700013570700 DE75694400070157162900

- 8. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, für das eine Europäische Technische Bewertung ausgestellt worden ist:
 - Bewertungsstelle: Deutsches Institut für Bautechnik (DIBt)
 - Notifizierte Stelle: Otto-Graf-Institut Stuttgart, Kennnummer 0672
 - Bewertungsdokument: ETAG 001 Teil1, 3 (04.2013)
 - Konformitätsbescheinigung: 0672-CPR-0635

9. Erklärte Leistung

Wesentliche Merkmale	Bemessungsverfahren	Leistung	Harmonisierte technische Spezifikation			
Charakteristische Werte der	ETAG 001, Anhang: C, Methode A CEN/TS 1992-4:2009, Methode A	ETA-15/0784: Anhang C1				
Zugtragfähigkeit	EOTA TR 045	ETA-15/0784: Anhang C2	ļ			
	EOTA TR 020 (Feuer- widerstand) CEN/TS 1992-4: Anhang D	ETA-15/0784: Anhang C3	ETAG 001 Teil 1, 3			
Charakteristische Werte der	ETAG 001, Anhang: C, Methode A CEN/TS 1992-4:2009, Methode A	ETA-15/0784: Anhang C1	ETAG 001, Anhang E EOTA TR 020			
Quertragfähigkeit	EOTA TR 045	ETA-15/0784: Anhang C2	(Feuerwiderstand)			
	EOTA TR 020 (Feuer- widerstand) CEN/TS 1992-4: Anhang D	ETA-15/0784: Anhang C3				
Montagekennwerte		ETA-15/0784: Anhang B2				
Verschiebungen für den Grenzzustand der Gebrauchstauglichkeit	ETAG 001, Anhang: C, Methode A CEN/TS 1992-4:2009, Methode A	ETA-15/0784: Anhang C4				

10. Die Leistung des Produkts gemäß den Nummern 1 und 2 entspricht der erklärten Leistung nach Nummer 9. Verantwortlich für die Erstellung dieser Leistungserklärung ist allein der Hersteller gemäß Nummer 4.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Schramberg, 01.07.2016

i.V. Andreas Hettich, Leiter PM/Marketing

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: alle Größen.
- Seismische Einwirkung C1:
 - MMS-plus alle Ausführungen in der Größe 10 mit maximaler Einschraubtiefe (h_{nom2}) und Größe 12 mit Einschraubtiefen h_{nom1} und h_{nom2} .
- Brandbeanspruchung: alle Größen.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- Gerissener oder ungerissener Beton: alle Größen.

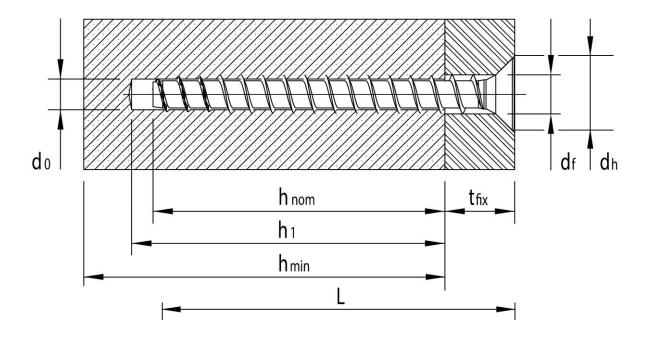
Anwendungsbedingungen (Umweltbedingungen):

Bauteile unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerung unter statischen und quasi-statischen Lasten erfolgt für das Bemessungsverfahren A nach:
 - ETAG 001, Annex C, Fassung August 2010 oder
 - CEN/TS 1992-4:2009
- Die Bemessung der Verankerung unter seismischer Einwirkung erfolgt nach:
 - EOTA Technical Report TR 045, Ausgabe Februar 2013
 - Verankerungen sind außerhalb kritischer Bereiche wie z.B. plastischen Fließgelenken anzuordnen.
 - Eine Abstandsmontage oder die Montage mit Mörtelschicht ist nicht zulässig.
- Bemessung der Verankerung unter Brandbeanspruchung nach:
 - EOTA Technical Report 020, Ausgabe Mai 2014 oder
 - CEN/TS 1992-4:2009, Anhang D
 - Bei Anforderungen an den Brandschutz ist sicherzustellen, dass lokale Abplatzungen vermieden werden.

Einbau:


- Bohrlochherstellung nur durch Hammerbohren.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand ≥ 2xh₁ der Fehlbohrung, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Der Dübel darf nur einmal verwendet werden.
- Leichtes Weiterdrehen des Dübels ist nicht möglich.
- Der Dübelkopf liegt vollflächig am Anbauteil an und ist nicht beschädigt.

Anhang B1

Montagekennwerte MMS-plus **Tabelle B1:**

Größe MMS-	-plus			(6		7,5		0	12	
				h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Einschraubtief	e im Beton		[mm]	35	45	35	55	50	65	75	90
Bohrernenndu	rchmesser	d_0	[mm]	Ę	5	(6	8	3	10	
Bohrschneider	ndurchmesser	d _{cut} ≤	[mm]	5,40		6,40		8,45		10,45	
Bohrlochtiefe		h₁ ≥	[mm]	40	50	40	65	60	75	85	100
Durchgangslo	Durchgangsloch Anbauteil d _f ≤		[mm]	7		9		12		14	
Durchmesser	Senkkopf	d_h	[mm]	11,5		15,5		19,5		24	
Mindestbauteil	ldicke	h _{min}	[mm]	100	100	100	100	100	115	125	150
gerissener und	Minimaler Achsabstand	S _{min}	[mm]	30	30	40	40	40	50	60	60
ungerissener Beton	Minimaler Randabstand	C _{min}	[mm]	30	30	40	40	40	50	60	60
empfohlenes S	Setzaerät		[Nm]		cher Tanç Herstelle			auber, max. Leistu		ngsabgabe T _{max}	
		[]	75	100	10	00	20	00	25	50	
Montagedrehmoment für metrisches Gewinde (MMS-plus V)		[Nm]		-	15		20		30		

Anhang B2

Tabelle C1: Charakteristische Werte für statische und quasi-statische **Zugbeanspruchung MMS-plus**

Größe MMS-plus	S				(6	7	,5	1	0	1	2	
					h _{nom1}	h _{nom2}							
Einschraubtiefe im	Beton	1	h_{nom}	[mm]	35 ¹⁾	45	35 ¹⁾	55	50	65	75	90	
Stahlversagen für	Zug-	und Quer	tragfähig	keit									
			$N_{Rk,s}$	[kN]	10),8	17	7,6	32	2,1	49,9		
Charakteristische Tra	afähial	koit	$V_{Rk,s}$	[kN]	4	,1	6	,1	13	3,7	24	1,1	
Charakteristische Ha	granigi	Keit	k ₂ ²⁾	-			1	0	,8				
			$M^0_{Rk,s}$	[Nm]	6	,7	14	1,1	34	1,5	66	6,8	
Teilsicherheitsbei	wert		γ_2	-				1,	25				
Herausziehen													
Charakteristische Tra ungerissenem Beton			$N_{Rk,p}$	[kN]	4,0	6,0	4,0	9,0	12,0	16,0	20,0	25,0	
Charakteristische Tra gerissenem Beton C2		keit in	$N_{Rk,p}$	[kN]	1,0	1,5	2,0	4,0	6,0	9,0	12,0	16,0	
Erhöhungsfaktor für		C30/37			1,22								
Druckfestigkeitsklass	en	C40/50	Ψ _c	-	1,41								
		C50/60			1,55								
Betonausbruch ui	nd Sp	alten											
Effektive Verankeru	ungsti	efe	h _{ef}	[mm]	26	35	26	43	36	50	57	70	
Faktor für	geris	ssen	k _{cr} ²⁾	-				7	,2				
raktor fui	unge	erissen	k _{unc} 2)	-				10),1				
Betonausbruch	Ran	dabstand	C _{cr,N}	[mm]				1.5	h _{ef}				
Detoriausbruch	Achs	sabstand	S _{cr,N}	[mm]				3	h _{ef}				
Spalten	Ran	dabstand	C _{cr,sp}	[mm]				1.8	h _{ef}				
Opanon	Achs	sabstand	S _{cr,sp}	[mm]				3.6	h _{ef}				
Teilsicherheitsbeiwert		$\gamma_2^{(3)} = \gamma_{\text{inst}}^{(2)}$	-				1	,0					
Betonausbruch auf der Lastabgewandten Seite													
k-Faktor		$k^{3)} = k_3^{2)}$	-				1,0				2,0		
Betonkantenbruch	Betonkantenbruch												
Wirksame Dübellär	nge		$I_{ef} = h_{ef}$	[mm]	26	35	26	43	36	50	57	70	
Wirksamer Außend	lurchn	nesser	d_{nom}	[mm]	ţ	5	(6	8	3	1	10	

¹⁾ Nur für statisch unbestimmte Systeme
2) Parameter nur relevant für die Bemessung nach CEN/TS 1992-4:2009

³⁾ Parameter nur relevant für die Bemessung nach ETAG 001, Anhang C

Charakteristische Werte für die seismische Einwirkung C1 **Tabelle C2:**

Größe MMS	S-plus		10	1	2	
				h _{nom2}	h _{nom1}	h _{nom2}
Einschraubtie	efe im Beton	h_{nom}	[mm]	65	75	90
Stahlversage	en für Zug- und (Quertragfä	ihigkeit			
Ch analitaniatica			[kN]	24,1	37	7 ,4
Charakteristisc	he Tragfähigkeit	$V_{Rk,s,seis}$	[kN]	9,6	16	5,9
Herausziehe	n					
Charakteristisc	he Trag-	$N_{Rk,p,seis}$	FI-NIT	6.0	0.0	40.0
fähigkeit in ger	fähigkeit in gerissenem Beton		[kN]	6,8	9,0	12,0
Betonausbru	ıch					
Effektive Vera	ankerungstiefe	h _{ef}	[mm]	50	57	70
Betonaus-	Randabstand	C _{cr,N}	[mm]		1.5 h _{ef}	
bruch	Achsabstand	S _{cr,N}	[mm]		3 h _{ef}	
Montagesiche	erheitsbeiwert	γ_2	-		1,0	
Betonausbru	ıch auf der Lasta	abgewand	ten Seit	е		
k-Faktor		k	-	2,0	1	,0
Betonkantenb	ruch					
Wirksame Dübellänge		l _{ef} = h _{ef}	[mm]	50	57	70
Wirksamer	_	٨	[mm]	0		0
Außendurchn	nesser	d_{nom}	[mm]	8	1	0

Charakteristische Werte unter Brandbeanspruchung Tabelle C3:

Größe MMS-plus				(ĵ	7	,5	1	0	12	
				h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Einschraubtiefe im Beton		h_{nom}	[mm]	35	45	35	55	50	65	75	90
Stahlversagen für	Zug- und Quert	tragfähig	keit (F _R	_{k,fi} = N _F	Rk,fi = V	Rk,fi)					
	R30	$F_{Rk,fi}$	[kN]	0,25	0,4	0,5	1,0	1,5	2,3	3,0	3,0
	R60	$F_{Rk,fi}$	[kN]	0,25	0,4	0,5	0,8	1,4	1,4	2,1	2,1
	R90	$F_{Rk,fi}$	[kN]	0,25	0,4	0,5	0,5	1,0	1,0	1,5	1,5
Charakteristische	R120	$F_{Rk,fi}$	[kN]	0,2	0,3	0,4	0,4	0,8	0,8	1,2	1,2
Tragfähigkeit	R30	$M^0_{Rk,s,fi}$	[Nm]	0,5		1,1		2,7		5,3	
	R60	$M^0_{Rk,s,fi}$	[Nm]	0	,3	0,6		1,5		2,8	
	R90	$M^0_{Rk,s,fi}$	[Nm]	0	,2	0,4		1,1		2,0	
	R120	$M^0_{Rk,s,fi}$	[Nm]	0	,2	0	,3	0,9		1,6	
Randabstand											
	R30 bis R120	C _{cr,fi}	[mm]	2 h _{ef}							
Achsabstand											
	R30 bis R120	S _{cr,fi}	[mm]				2 0	cr,fi			

Tabelle C4: Verschiebungen unter Zuglast

Größe MMS-plus					6		7,5		10		2
				h _{nom1}	h _{nom2}						
Einschraubtiefe im E	Einschraubtiefe im Beton		[mm]	35	45	35	55	50	65	75	90
Harris and Batan	Zuglast	Ν	[kN]	1,9	3,0	1,9	5,3	5,7	7,9	10,7	12,8
Ungerissener Beton	.,	δ_{N0}	[mm]	0,11	0,11	0,06	0,12	0,06	0,07	0,05	0,19
C20/25 bis C50/60	Verschiebung	δ_{N^∞}	[mm]	0,30	0,28	0,38	1,03	0,75	0,72	0,74	0,60
0	Zuglast	Ν	[kN]	0,5	0,7	0,9	2,0	2,9	4,3	5,7	6,4
Gerissener Beton C20/25 bis C50/60		δ_{N0}	[mm]	0,01	0,02	0,03	0,04	0,03	0,09	0,05	0,02
	Verschiebung	δ _{N∞}	[mm]	0,14	0,09	0,12	0,11	0,08	0,09	0,07	0,22

Verschiebungen unter Querlast Tabelle C5:

Größe MMS-plus					6		7,5		10		2
				h _{nom1}	h _{nom2}						
Einschraubtiefe im E	h_{nom}	[mm]	35	45	35	55	50	65	75	90	
Gerissener und	Querlast	٧	[kN]	2	2	4	4	8	8	12	12
Ungerissener Beton	Verschiebung -	δ_{N0}	[mm]	0,14	0,13	0,09	0,11	0,18	0,13	0,18	0,18
C20/25 bis C50/60		δ_{N^∞}	[mm]	0,20	0,19	0,13	0,16	0,27	0,20	0,27	0,27